Oncology
Immuno Oncology
Anti-Virus
Disease Modeling
Cosmetics
Toxicity
Spatial Biology
Technology Service
Cancer Organoid
Research Service
Others
Organism | Human |
Product Type | Organoid + T cell + Macrophage |
Tissue | Innate |
Disease |
Applications
Colorectal cancer
Colorectal cancer organoids faithfully mimic patient tumors, aiding drug testing and personalized treatment strategies through biomarker identification and high-throughput screening in a realistic tumor microenvironment
Non-small cell lung cancer
Non-small cell lung cancer organoids mirror patient tumor diversity and genetics, providing a robust platform for detailed cancer research, including drug responses and personalized treatment exploration
Pancreatic cancer
Pancreatic cancer organoids replicate patient tumor complexity, informing drug responses, disease modeling, and biomarker discovery to advance personalized treatment strategies and research
Breast cancer
Patient-derived breast cancer organoids mimic tumor complexities, facilitating diverse drug testing and precision medicine research for personalized treatment strategies
Cholangiocarcinoma
Cholangiocarcinoma organoids aid in personalized treatment strategies by replicating patient tumor complexity and advancing research through biomarker identification and drug screening
The co-culture drug evaluation solution with macrophages, T cells, and cancer organoids allows for the simultaneous observation of the phagocytic activity of macrophages and the cytotoxic ability of T cells. Co-culturing with both M1 and M2 macrophages is possible, mimicking the role of macrophages observed in actual cancer tissues.
By utilizing patient-derived tumor organoids and T cells, macrophages, this is a new evaluation solution with mechanisms involving two or more immune cells.
Generally, M1 macrophages are known to be associated with tumor growth suppression and M2 macrophages are known to be associated with tumor growth promotion.
To perform different functions, they have different immune markers, metabolic characteristics and gene profiles.
In vivo, proper balance of differentiation into M1 and M2 macrophages is required to elicit an immune response against tumors.
For the development of a new drug evaluation solution, we conducted efficacy evaluations of drugs and antibodies on co-cultures of M1 macrophages, M2 macrophages and tumor organoids.
After conducting the efficacy evaluation, growth rates and mortality were measured to establish optimal co-culture conditions
To enable efficient testing, we have developed an evaluation solution utilizing macrophages derived from pluripotent stem cells.
Ultimately, we have created an optimal co-culture model with macrophages derived from pluripotent stem cells, T cells and tumor organoids. By testing various drug conditions on this model, we confirmed high drug response rates.
We have selected these rates as evaluation criteria for immuno-oncology drugs.
I suggest challenging more advanced research through this new evaluation solution involving multiple immune cells.
It could be a more effective strategy for your research.
@ 2024 . All rights reserved
@ 2024 . All rights reserved