Price | 5500€+ Login to see price |
Organism | Human |
Product Type | iPS-derived organoid |
Tissue | Cardiac |
Disease | – |
Applications
-
With the global rise of K-beauty, the cosmetics industry continues to grow steadily. Since the ban on animal testing for cosmetics in Korea in 2017, various alternative testing methods have...
Traditional microscopy methods often require fluorescent labeling to analyze cellular structures, which can be time-consuming and invasive. In contrast, our HT-X1 system allows for high-resolution visualization of cellular morphology without...
Traditional protein analysis has primarily focused on quantifying expression levels within tissue samples. However, recent advances in spatial analysis techniques have shifted attention toward evaluating not only expression levels, but...
Among the many fermented foods we consume, kimchi is particularly known for containing a diverse range of lactic acid bacteria, which are believed to influence the activation of immune cells...
We conducted a study focused on identifying disease-related markers using patient-derived tissue samples. However, traditional methods limited our ability to analyze multiple candidate markers simultaneously, and the limited availability of...
Leverage our breakthrough cardiac organoids, engineered from human-induced pluripotent stem cells (iPSCs).
By transforming 3D embryoid bodies through precise signal manipulation, we create organoids that emulate heart tissue, advancing personalized cardiac research and therapy.
– Cardiomyocytes
– Non-myocytes
(cardiac fibroblast, endothelial cells)
The cardiac organoids produced are composed similarly to the human heart, containing cardiomyocytes and non-muscle cells like cardiac fibroblasts and endothelial cells.
Through FACS analysis, it was determined that cardiomyocytes constitute about 65% of the cell population, with the majority of the non-muscle cells being fibroblasts and endothelial cells.
Using immunofluorescence, we have confirmed the expression of myocardial markers (cTnT, α-actinin), fibroblast markers (α-SMA), and endothelial cell markers (CD31) in our cardiac organoids.
This method allows for detailed visualization and verification of specific cellular components critical to heart tissue function.
To analyze the electrophysiological properties of cardiac organoids with spontaneous beating, we employ the patch clamp technique. By inserting electrodes into the cell membranes of the cardiac organoids, we can monitor action potentials in real-time, providing valuable insights into their functional behavior.
Deutscher Platz 5c, 04103, Leipzig, Germany
info@lambdabiologics.com