Meet us at SITC 2025 (November 05-09) - Personalizing TME with Organoid
Meet us at Neuroscience 2025 (November 15-19) - Advanced Brain Organoid Models for Neuroscience Research
Meet us at ODC25 ASEAN (December 12-13) - New Science New Culture
Meet us at SITC 2025 (November 05-09) - Personalizing TME with Organoid
Meet us at Neuroscience 2025 (November 15-19) - Advanced Brain Organoid Models for Neuroscience Research
Meet us at ODC25 ASEAN (December 12-13) - New Science New Culture
Home » Latest Research Trends » Organoid » Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration

In this study, researchers investigated the forces at play in mouse intestinal organoids, which are three-dimensional models of the intestinal epithelium. They found that these organoids exhibit complex stress distribution patterns that are essential for their mechanical and functional compartments. Specifically, the stem cell compartment pushes the extracellular matrix and folds through apical constriction, while the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment is influenced by the stiffness of the extracellular matrix and intrinsic cellular forces. Computational modeling suggests that the shape of the crypts and the distribution of forces are governed by cell surface tensions related to cortical actomyosin density. Additionally, cells are pulled out of the crypt in a gradient of increasing tension. This research sheds light on how patterned forces play a crucial role in the compartmentalization, folding, and collective migration within the intestinal epithelium.

Keywords: Organoid

Subscribe
to the latest updates in the newsletter

Related Solutions

  • Disease Modeling
  • Oncology
  • Organoid
  • Cosmetics
  • OECD TG
  • Zebrafish
  • Bioinfomatics
  • Live&3D Imaging
  • Molecular biology
  • Spatial Biology

Next Articles

Connect with Us