Search
iPSC Generation_main
Research Service

iPSC Generation

5146€+
Research Service

iPSC Generation

  • Quality Control and Extensive Experience
    With over 1000 iPSC lines generated, we ensure top-quality control through rigorous testing, including RNA reprogramming vector clearance and mycoplasma testing.
  • Rapid Custom Constructs
    Quickly obtain stem cell reporter custom constructs with our pipette-free service. Simply email us your gene sequence, and we’ll synthesize and clone it into any of our inducible vectors for minimal cost.
  • Safe and Standardized Reprogramming
    Utilizing Sendai virus vectors, we produce transgene-free iPSCs, providing a safer, non-integrating alternative to traditional methods. Our standard package includes the generation of three different iPSC lines per individual and comprehensive pluripotency characterization.

Price
Organism
Human
Product Type
iPSC
Tissue
Kreatinocytes, Urine, Blood, PBMCs
Disease

Applications

Toxicity

Organoid Based

Professor Lee Chang-seok Eulji University
Customer insight

Advancing K-Beauty with Skin Organoids: A Next-Generation Platform for Non-Animal Testing and High-Precision Cosmetic Innovation

With the global rise of K-beauty, the cosmetics industry continues to grow steadily. Since the ban on animal testing for cosmetics in Korea in 2017, various alternative testing methods have...

Tomocube (Spatial)
Customer insight

HT-X1: A Label-Free Imaging Breakthrough for Organoid-Based Disease Modeling and Drug Screening

Traditional microscopy methods often require fluorescent labeling to analyze cellular structures, which can be time-consuming and invasive. In contrast, our HT-X1 system allows for high-resolution visualization of cellular morphology without...

Seoul National University College of Medicine
Customer insight

Pioneering Spatial Protein Analysis in Korea: Advancing Clinical Pathology with Lambda Biologics’ Support

Traditional protein analysis has primarily focused on quantifying expression levels within tissue samples. However, recent advances in spatial analysis techniques have shifted attention toward evaluating not only expression levels, but...

K Research Institute
Customer insight

ODISEI-Gut Platform Reveals Immune-Boosting Potential of Kimchi-Derived Bacterial Strain

Among the many fermented foods we consume, kimchi is particularly known for containing a diverse range of lactic acid bacteria, which are believed to influence the activation of immune cells...

Bundang Jesaeng General Hospital
Customer insight

Multiplex Marker Analysis Enhances Research Efficiency with 31-Marker Detection on a Single Slide

We conducted a study focused on identifying disease-related markers using patient-derived tissue samples. However, traditional methods limited our ability to analyze multiple candidate markers simultaneously, and the limited availability of...

Description

Table of Contents

Application of iPSC

Induced pluripotent stem cells (iPSCs) are created by reprogramming somatic cells to gain pluripotency, allowing them to differentiate into any cell type in the body.
This capability is crucial for studying cellular functions, creating disease models, and developing patient-specific therapies.

iPSC generation using non-integrating system

We utilize a variety of cells, including PBMC (peripheral blood mononuclear cells) and fibroblasts, to produce iPSCs.
Notably, our iPSC production method employs a non-integrating approach, ensuring both safety and efficiency.
By generating iPSCs without genetic modification, we obtain more natural and stable stem cells.

Undifferentiated marker analysis

We rigorously check the presence of key pluripotency markers via flow cytometry and immunocytochemistry (ICC) to ensure that iPSCs remain undifferentiated until needed for your specific research purposes.

Three germ layer differentiation potential analysis

Verifying the true pluripotency of iPSCs (induced pluripotent stem cells) is a critical step in research.
The confirmation of trilineage differentiation involves assessing the ability of iPSCs to differentiate into the three germ layers: endoderm, mesoderm, and ectoderm.
This evaluation is conducted through teratoma formation and spontaneous differentiation into the three germ layers.

Mycoplasma test

To guarantee safety of our cell cultures, we perform thorough mycoplasma contamination testing.
This ensures that our iPSCs are free from contaminants that could compromise your research.

Vector clearance test

We confirm the removal of reprogramming vectors to prevent any residual vector sequences from affecting the iPSCs

STR analysis

STR analysis is used to confirm that the original somatic cells and the reprogrammed iPSCs share the same genetic profile.
This ensures that the cells have been correctly reprogrammed.

Karyotype analysis

Through karyotype analysis, it was confirmed that there were no chromosomal mutations in the iPSCs produced.

Connect with Us